'Silent' Mutations Gave the Coronavirus an Evolutionary Edge
RNA folding may help explain how the coronavirus became so hard to stop after it spilled over from wildlife to humans.
DURHAM, N.C. -- We know that the coronavirus behind the COVID-19 crisis lived harmlessly in bats and other wildlife before it jumped the species barrier and spilled over to humans.
Now, researchers at 老牛影视 have identified a number of 鈥渟ilent鈥 mutations in the roughly 30,000 letters of the virus鈥檚 genetic code that helped it thrive once it made the leap -- and possibly helped set the stage for the global pandemic. The subtle changes involved how the virus folded its RNA molecules within human cells.
For the , published Oct. 16 in the journal PeerJ, the researchers used statistical methods they developed to identify adaptive changes that arose in the SARS-CoV-2 genome in humans, but not in closely related coronaviruses found in bats and pangolins.
鈥淲e鈥檙e trying to figure out what made this virus so unique,鈥 said lead author , a postdoctoral associate in biologist at Duke.
Previous research detected fingerprints of positive selection within a gene that encodes the 鈥渟pike鈥 proteins studding the coronavirus鈥檚 surface, which play a key role in its ability to infect new cells.
The new likewise flagged mutations that altered the spike proteins, suggesting that viral strains carrying these mutations were more likely to thrive. But with their approach, study authors Berrio, Wray and Duke Ph.D. student also identified additional culprits that previous studies failed to detect.
The researchers report that so-called silent mutations in two other regions of the SARS-CoV-2 genome, dubbed Nsp4 and Nsp16, appear to have given the virus a biological edge over previous strains without altering the proteins they encode.
Instead of affecting proteins, Berrio said, the changes likely affected how the virus鈥檚 genetic material -- which is made of RNA -- folds up into 3-D shapes and functions inside human cells.
What these changes in RNA structure might have done to set the SARS-CoV-2 virus in humans apart from other coronaviruses is still unknown, Berrio said. But they may have contributed to the virus鈥檚 ability to spread before people even know they have it -- a crucial difference that made the current situation so much more difficult to control than the SARS coronavirus outbreak of 2003.
The research could lead to new molecular targets for treating or preventing COVID-19, Berrio said.
鈥淣sp4 and Nsp16 are among the first RNA molecules that are produced when the virus infects a new person,鈥 Berrio said. 鈥淭he spike protein doesn鈥檛 get expressed until later. So they could make a better therapeutic target because they appear earlier in the viral life cycle.鈥
More generally, by pinpointing the genetic changes that enabled the new coronavirus to thrive in human hosts, scientists hope to better predict future zoonotic disease outbreaks before they happen.
鈥淰iruses are constantly mutating and evolving,鈥 Berrio said. 鈥淪o it's possible that a new strain of coronavirus capable of infecting other animals may come along that also has the potential to spread to people, like SARS-CoV-2 did. We鈥檒l need to be able to recognize it and make efforts to contain it early.鈥
CITATION: "," Alejandro Berrio, Valerie Gartner, Gregory A Wray. PeerJ, October 16, 2020. DOI: 10.7717/peerj.10234