Image
Brittle stars may lack a brain, but that doesn鈥檛 stop them from learning, Duke researchers report. Credit: Julia Notar

Brittle Stars Can Learn Just Fine -- Even Without a Brain

In the case of brittle stars, that seems to be enough to learn by association, Notar, Johnsen and former Duke undergraduate report in the journal Behavioral Ecology and Sociobiology.

This type of learning involves associating different stimuli via a process called classical conditioning. A famous example is Pavlov鈥檚 dog experiments, which showed that dogs repeatedly fed at the ringing of a bell would eventually start drooling at the mere sound of a bell, even when no food was around.

Humans do this all the time. If you hear the 鈥渄ing鈥 of a smartphone over and over again with each new alert, eventually the sound starts to have a special meaning. Just hearing someone鈥檚 phone ping or buzz with the same chime as yours is enough to make you reflexively reach for your own phone in anticipation of the next text, email, or Instagram post.

Classical conditioning has been demonstrated in a handful of previous studies in starfish.  But most echinoderms -- a group of some that includes brittle stars and similarly brainless starfish, sea urchins and sea cucumbers -- have not been tested.

To find out if brittle stars are capable of learning, the researchers put 16 black brittle stars (Ophiocoma echinata) in individual water tanks and used a video camera to record their behavior.

This time-lapse video shows a classical conditioning experiment Duke researchers conducted to see if brittle stars 鈥 which don鈥檛 have brains 鈥 could learn. Every time the lights went dim, the researchers put a pipette with a morsel of shrimp in the animals鈥 tanks. Over time the animals learned that 鈥渓ights out鈥 was a dinner bell call to come for dinner.

Half the brittle stars were trained by dimming the lights for 30 minutes whenever the animals were fed. Every time the lights went out, the researchers would put a morsel of shrimp -- 鈥渨hich they love鈥 -- in the tanks, placed just out of reach.

The other half got just as much shrimp and also experienced a 30-minute dark period, but never at the same time -- the animals were fed under lit conditions.

Whether it was light or dark, the animals spent most of their time hiding behind the filters in their tanks; only coming out at mealtime. But only the trained brittle stars learned to associate darkness with food.

Early in the 10-month-long experiment, the animals stayed hidden when the lights went out. But over time, the animals made such a connection between the darkness and mealtime that they reacted as if food was on its way and crept out of hiding whenever the lights went out, even before any food was put in the tanks.

These brittle stars had learned a new association: lights out meant that food was likely to show up. They didn't need to smell or taste the shrimp to react. Just sensing the lights go dim was enough to make them come when called for dinner.

They still remembered the lesson even after a 13-day 鈥榖reak鈥 without training, i.e., dimming the lights over and over again without feeding them.

Notar said the are 鈥渆xciting鈥 because 鈥渃lassical conditioning hasn't really been shown definitively in this group of animals before.鈥

鈥淜nowing that brittle stars can learn means they鈥檙e not just robotic scavengers like little Roombas cleaning up the ocean floor,鈥 Notar said. 鈥淭hey're potentially able to expect and avoid predators or anticipate food because they鈥檙e learning about their environment.鈥

As a next step, Notar hopes to start to tease apart how they manage to learn and remember using a nervous system that is so different from our own.

鈥淧eople ask me all the time, 鈥榟ow do they do it?鈥欌 Notar said. 鈥淲e don't know yet. But I hope to have more answers in a few years.鈥

This work was supported by the U.S. Department of Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program, the Duke Nicholas School Rachel Carson Scholars program and the Duke Biology Department.

CITATION:  "Learning Without a Brain: Classical Conditioning in the Ophiuroid Ophiocoma echinata," Julia C. Notar, Madeline C. Go, and S枚nke Johnsen. Behavioral Ecology and Sociobiology, Nov. 21, 2023. DOI: